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EXCITATION OF AN ELASTIC HALF-SPACE BY A
TIME-DEPENDENT DIPOLE-I.

THE SURFACE DISPLACEMENTS DUE TO A
SURFACE DIPOLE

O. F. AFANDI and R. A. SCOTT

Engineering Mechanics Department, University of Michigan, Michigan

Abstract-The surface displacements due to a surface, time-dependent dipole in an elastic half-space are treated.
Closed-form expressions are given for an arbitrarily oriented dipole with a ramp time-dependence. These expres
sions are analyzed numerically for a special dipole orientation for several values of the ramp rise-time.

1. INTRODUCTION

TRANSIENT elastic wave propagation in a homogeneous elastic half-space is treated, the
waves being generated by a time-dependent dipole. Such a study is a contribution to non
axisymmetric elastodynamics, an area of emerging interest (see Scott and Miklowitz [lJ).
It is also important in view of the fact that dipole sources can be regarded as simple earth
quake models.

A substantial amount of work on elastic transients in a half-space has already been
done. First motion studies involving various source models have been given by Knopoff
and Gilbert [2, 3J and Burridge et al. [4]. Pekeris [5, 6J gave closed-form solutions for the
surface displacements due to a vertical, surface point source with a Heaviside step time
dependence. This same problem was treated by Chao et at. [7J, who retained only the
Rayleigh wave contribution in their numerical work. Lang [8J, in work on a surface point
load, gave numerical results for distinct surface events. Pekeris [9J also gave results in
terms of integrals for the surface displacements due to a buried, vertical force with a
Heaviside step time-dependence. In a later paper [IOJ, he and Lifson evaluated the integrals
numerically and gave results for several epicentral distances. Pinney [llJ obtained the
surface displacements due to impulsive, internal sources and torques. His results were in
terms of integrals, information being obtained by numerical integration. The buried torque
pulse was also treated by Pekeris and Longman [12]. They obtained the surface vertical
displacements and evaluated the integrals that arose numerically. Chao [13] presented
closed-form, surface results for the case of the surface of the half-space being loaded by a
tangential point force with a Heaviside step time-dependence. A significant contribution
was given by Aggarwal and Ablow [14, 15J, who developed a method whereby surface
results for arbitrary, buried sources can be obtained in terms of integrals. The works of
Eason [16] and Mitra [17J should also be noted. Eason, using integral representations
and a Cagniard-de Hoop method, obtained surface results and large-time results for the
case of a suddenly applied, vertical, surface force. Mitra presented surface information on
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the displacements produced by time-dependent body forces. However, his solutions are
in terms of integrals and no numerical information was given.

Little work has been done on the transients generated by dipole (and other multipole)
sources. Chandra [18J, using saddle-point methods, gave results on the surface phases
generated by a double couple source with a Heaviside step time-dependence. The present
paper treats the surface displacements produced by a surface dipole with a ramp time
dependence. A major contribution is that closed-form expressions are given for the hori
zontal and vertical displacements for the case of an arbitrarily oriented dipole. The formal
solutions are obtained using Fourier~Bessel superposition methods and the Laplace
transformation. Inversion is achieved with the aid of contour integration techniques.

Numerical studies for several values of the ramp rise-time, are presented for a special
dipole geometry.

2. DEVELOPMENT OF THE SOLUTIONS

Only shear faults are treated, that is (see Fig. 1)

./I/1! + ./2/12 + ./3/1 3 = °
where the /1'S are the Cartesian components ofa unit vector perpendicular to the fault plane
and the f's are the Cartesian components of a unit force in the fault plane. A point dipole
is an idealized model of such a fault. Cylindrical coordinates r, ¢ and z are used with the
origin at the dipole, which is a depth d below the surface of the half-space and the z axis
pointed vertically downwards. In view of the very considerable amount of algebra involved,
only an outline of the procedure will be given.

Following the development given by Haskell [19], it can be shown that the Laplace
transformed displacements iir , iiI/> and iiz due to a point dipole in an infinite medium, are,
for z < O,t

(1)

r ---j

R

1

FIG. I. Dipole geometry.
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X
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t Since interest is ultimately in the surface displacements, only z < 0 is considered in !he sequel.
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4nppz _ Gz c .

n(p) Ut/> = -4Dz+DI cos¢+/y" sm¢+Do

4nppz _ G I c s .
n(p) U z = 4 Ez +EI cos¢+E I sm¢-Eo

GI = 2[(fzl1z - f l l1 l ) cos 2¢-(jlI1Z+ f zl1 l ) sin 2¢]

Gz = -2[(fII1Z+fzl1 l ) cos 2¢+(fzl1z-fl l1 l ) sin 2¢]

Bz = Joo kZ(k
Z
e~l-11z e~2)JI(kr)dk-~Joo k3(eZ~1 _eZ~2)Jz(kr)dk

o 11 I r 0 11 1 112

B~ = -(f3111 + f1113{foOO k3(e~1-e~2)Jo(kr)dk-~{00 p(e~1-e~2)JI(kr)dkJ

p2 Joo
+f11132 keZ~2Jo(kr)dk

Cs 0

B~ = -(fZI13+ f 3I1 Z{{00 k3(e~1-e~2)Jo(kr)dk-~{00k2(e~l-e~2)JI(kr)dkJ

p2 Joo
+ f zl1 32 k e~2Jo(kr) dk

Cs 0

(
f 11 +f 11 )JOO 2

J
OO

D~ = - 3 2 r z 3 0 k2(e~1 - eZ~2)J1(kr) dk +f2113 ~; 0 k e~2Jo(kr) dk

D~ = (f3
11

1~ f1
11

3) {OO kZ(e~l _ eZ~2)J I(kr) dk - f l 11 3 ~; fooo k eZ~2Jo(kr) dk

1 Joo k
2

Do = -2 (f111 2-f211 1) -e~2JI(kr)dk
o 11 z

E z = {OO k\e~2 _ e~l)Jz(kr) dk
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ryl = I( k
2 +E;j ,

'\ Cd

c; = (.:t +2J1}Jp, c; = !lIp.

(4)

(7)

(5)

(6)

1 and J1 being the Lame constants, p the density, h(t) the source time-dependence, the J's
Bessel functions of the first kind and the bar denotes the Laplace transform, parameter p.
1n arriving at (1)-(3), the integral representations

1 [ p.J(Z2 + 1'
2)J' f':D k

,- 2 2 exp ------ = - exp[-lzI1h(lh)JJo(k1') dk
.J(z +1' ) cd(cJ 0 111

were used. As (4) shows, branch points arise on the imaginary p-axis. The branches that were
chosen were such that Re 1JI > 0, Re ry2 > 0, when Re p > 0, Re denoting real part.

The solutions to the half-space problem are obtained by using (1)-(3) to suitably
adjust general solutions to the equations of motion, the resulting expressions being in turn
adjusted so that the surface of the half-space is stress-free. Following Scott and Miklowitz
[lJ it can be shown that quite general solutions to the transformed equation of motion are

4npp
2 fm [ 11 J- n(p) it: = cosn¢ 0 kX~cJII_l(kr)-;(x,:,,+x~c)JlI(kr) dk

f :O[ 17 J+sin12¢ 0 kX~S]n_l(kr)-/=(x~s+x~S) J,,(kr)dk

4npp
2 -II ' "" JCI.) [k nc] (k) It (nc IIC)] (k )~ dk-' l1(p) ui/J = smn<jJ 0 X3 ,,-I r -/= Xl +X3 n rJ

J'YJ [ 11 J- cos n¢ 0 kX;SJ,,- 1(kr) - r (X~S + X~s)Jn(kr) dk

4 2 fOO JCI.)- ~pp u~ = cos n¢ x'2CJ,,(kr) dk+sin n¢ X~SJn(kr) dk
n(p) 0 0

where n is an integer, provided

cfII)tlC(s}
xnc(S) - __1:.-__ <I>nc(s)

i - dz 1

dq,nc(s)
r:;C(S) = _ ._~l_ + k2~C(S)

2 dz

d2<!>,:c(s)
__J_'~_1J~~~C(S) = 0 } = 1,2,

dz2 J) ,

(8)

(9)

(10)

(11)

Solutions to (8)-(11) are readily obtained. On substituting these solutions, which
involve arbitrary constants, into (5)-{7), a general family of solutions to the transformed
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displacement equations of motion is obtained.t Not all members ofthis family are required
for the problem at hand. In fact, since no ¢-boundary arises, the ¢-dependence in the
solutions must be the same as that of the source. Hence only the n = 0,1 and 2 terms in (5}-
(11) are retained. The arbitrary constants involved are evaluated using the following
procedure: (i) Terms corresponding to (IH3) are matched. (ii) Use is made of the trans
formed stress-displacement relations and the fact that the half-space boundary is stress
free. On noting the linear independence of the trigonometric functions, several conditions
arise. For example

lead to, in part

(fz, = 0, (fze = 0, z = -d

roo {dJ2(kr) [f2(k, z)+ dft(k, z)] _~ J2(kr)[df 3(k, Z)] }dk = 0 (12)
J0 dr dz z = - d r dz z = - d

foo {dJ2(kr) [df 3(k, Z)] +~ J2(kr)[f2(k, z) +dft(k, Z)] }dk = 0 (13)
o dr dz z = - d r dz z = - d

where the functions ft, f2 and f3 involve arbitrary constants. Multiplying (12) by r/2,
differentiating the result with respect to r and adding to (13), can be shown to give

(
dft)f2+-d = 0,

z z=-d
(df 3

) = 0
dz z= -d .

(14)

It should be noted here that in [1] it is stated that equations such as (14) follow immedi
ately from equations such as (12). However, in view of the recursion relation

the right side of which has an infinite number of zeros in the range of integration, the
procedure of setting the integrands in (12) and (13) to zero separately as a general one is
suspect. But, as occurs in [1], the method can lead to correct results in certain circum
stances, such as restricting the manner in which the boundary shear stresses can vary.
The last author in particular is grateful to Dr. K. Viswanathan who pointed out the current,
more general method in a private communication.

Proceeding in the above fashion, enough conditions for the determination of the
arbitrary constants can be found. Once the constants have been obtained, the transformed
field quantities can be found. After considerable algebra, the transformed radial displace
ment!: can be shown to be

4npp2 -0

n(p) U,

(15)

(16)

t The transformed stresses can be found on using the transformed stress-displacement relations.
t For the sake of brevity, the subsequent procedure is illustrated only for u,_
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L 7 = PDe=nl_(k2+2A 1 ~;)De=n2

L = [A p2 D-(k2+A p2)gJ e-(2d+Z)nl_k2ge-(2d+z)nl
8 2 c2 2 c2

s s

L
9

= 4k21J t1J2(k2+ IJD e -dnl - (d+ z)nz +4k2(k2+ IJD (k2+ A2~;) e -dn2 - (d+ Z)nl

L = -[(k2+A p2)g+A p2 DJ e-(2d+z)nz_k2ge-(2d+z)nl
10 2

C
2 2

C
2

s s_



Excitation of an elastic half-space by a time-dependent dipole---l

L I4 = D[('11 '12 +p2 ~J e"~2 - k2 ez~'l

LIS = [1JI'12g-
p2

~: DJ e-(2.d+z)~1+Pge-(2d+Z)~1

L I6 = D[('11'12 pZ ~~) e"~2-kZeZ~lJ

g = (kz +'1D2+4k2'1I'1z, D = (kz +'1Dz-4k2'11'12

ll51

Attention is now confined to the surface displacements and to a ramp time-dependence,
i.e.

j
0, t < q

h(t)=~, O<t<q. (19)

1, t> q

Moreover, only solids for which A= 11 are treated.t Then (16H18) yield, on making the
variable change csk = px,

4npc;QRu~ = -n3f3(ll-lz) (20)

4npc;QRu; = A3[l3-14+1s-16-2(AI+Az)(13 14 -17)] (21)

4npc;QRu; = Gl(18-19+11O-111) (22)

/- foo 2x
2
(3x

z
+2/3)az J (5:) ( d '. ) d

1 1 u exp - P al/cs x
o m l

foo 3xz(2xz + l)az
1z Jl«(j) exp(-p da2/cs) dx

o ml

f 00 2x3a I az13 J z«(j) exp( - p dazlcs) dx
o m l

- f 00 x3(1 +2xZ
)

14 = J z«(j) exp( - p dazlcs)dx
o m l

f00 x3(1 +2xZ
)

15 Jo((j) exp( - p dazlcs) dx
o ml

- f002x3alaz
16 = Jo«(j)exp(-pdatlcs)dx

o m l

foo x(1 +2xz+md
17 Jo«(j) exp( - p dazlcs) dx

o m l

tWit ' condition, the roots of lhe Rayleigh wave equation are real. This results in simpler algebra later.
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A 3 = 4[(f311 1 +11'13) COS <P +(fz'13 +1311z) sin <pJ

IX I = ~(X3 +j), IX z = ~(XZ + 1), (j = pxrlcs , rQ = qcs

m 1 = (1 +2xz)z -4xZ(xZ+ 1)±(XZ+H~.

A typical integral in (20H22) is

(23)

where

F(x) = Fl(x) exp( - p dlXdcs)

Fl(x) being free of exponentials and the Bessel functions having been replaced by their
Hankel function equivalents. In general the only singularities of F1(x) are branch points
at x = ± il~3, ± i and simple poles at ± y, y = t(3 +~W:. Integrals of the type (23) have
been treated by Pekeris [5J and Aggarwal and Ablow [15J using contour integration tech
niques and their method will be followed here. When H~l) arises, the contour consists of
the positive real and imaginary axes and a large quarter circle in the first quadrant. For
H~Z), a contour consisting of the positive real axis, the negative imaginary axis and a large
quarter circle in the fourth quadrant is taken. Aggarwal and Ablow [15J showed that the
integrals over the quarter circles go to zero if

F(x) = O(lxl-(n+±l)

for Ixllarge and arg x :s; n12. It is important to note that this order condition is not satisfied
by several of the F1's that arise in the present work. However, thanks to the exponential
factor, the corresponding F's do satisfy the condition, since Re IX I > 0, when Re p > 0
-a restriction that is permissible in view of Lerch's theorem. It is interesting that in order
to obtain results for a surface dipole, d cannot be set equal to zero at this stage.

The contour integration method applied to (23) gives

Sn = ~ I f.oo vn+ 1F1(iv) exp(prVICs)Kn(prv) exp( - prlcs)[l(j- V
Z)± +v(l- F)±J dv (24)

n 0 Cs

where I = dlR, K denotes a modified Bessel function ofthe first kind and I stands for imagin
ary part. Also, the path of integration is to be interpreted as including an indentation over a
simple pole (corresponding to the Rayleigh wave). Equation (24) can be reduced further on
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mapping the v-plane onto a w-plane by means ofthe transformation

1153

The new path of integration can be "traded" for one along the real w-axis by means of
Cauchy's theorem. One gets

Sn = -~ I rro exp(prv(W)/cs)Kn[E.. rv(w)] exp( - prw/cs)Ft [iv(w)]vn+ l(W) ddv dw. (25)
rc Jo _Cs w

The advantage of this form is that now w is real, positive, monotonic increasing and has
an infinite range. Thus it can be interpreted as time. Then, using the shift theorem of the
Laplace transform and a result in Erdelyi [20J, one gets

(26)

where

L- t denotes the inverse Laplace transform, H the Heaviside unit step function and
rr = tcs '

Using (26), (25) gives

(27)

On considering a surface dipole, i.e. l = 0, it can be shown that, on employing a partial
fraction decomposition, integrals such as (27) can be written in closed form. Applying such
results to (20H22), one gets

0, r < 1/..j3

Pl(r), 1/..j3 < r < Q+ 1/..j3

Pl(r)-Pl(r-Q), Q+l/..j3 < r < 1

4rcpc:Qru? = p2(r)-pt(r- Q), 1 < r < y (28)

P3(r)-pt(r-Q), y < r < 1+Q

P3(r)-p2(r-Q), 1+Q < r < y+Q

P3(r)-P3(r-Q), r> y+Q
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0, 1: < 1/J3

(34(1:), 1/J3 < 1: < Q+ 1/J3

(34(1:)-{34(1:-Q), Q+1/J3 < 1: < I
4npc;Qr 1

A
3

Ur = (3S(1:)-{34(1:-Q), 1 < 1: < l' (29)

(36(1:)-{34(1:-Q), Y < 1: < 1+Q

(36(r)-{3S(1:-Q), 1+Q < 1: < Y+Q

(36('r)-{36(r-Q), 1: > Y+Q

0, 1: < t/J3,

(37(1:), 1/J3 < 1: < Q+ 1/J3

(37(1:)-{37(1:-Q), Q+1/J3 < 1: < 1
4npc;Qr 2

G
1

Ur = (3S(r)-{37(1:-Q), 1 < 1: < Y (30)

(39(1:)-{37(1:-Q), Y < 1: < 1+Q

(39(r)-{3S(r-Q), 1+Q < 1: < y+Q

(39(r)-(39(r-Q), r > y+Q

_ 5Csr{ 2 3 (1+J3)t (-1+ J 3)t}
{31- 48r J3+(r2-i)t [r2-(3-J3)/4]t-[ r2+(3+J3)/4]t J3

5Cs1:{ 2 (-1 +.j3)t }
{32 = 24r J3 [_ r2+ (3 + .j3)/4]t J3

{3
- 5csr

3 - 12r

(34 = T 1+ T2 -2(A 1+A2 )(T1+2T2)

(3s = T3+T4-2(A1+A2)(T3+2T4)

{3
-(3 csr

2 (A t +A2)(r2+1'2)cs
6 - s+ 2r(r2_y2)t r(r2_ y2)t

{37 = Ts + T6, {3s = T7+ Ts , {39 = T9 + TiO

96nrTl = {(24r2-11)KW+8mW-9(8r2 l)r(8e2, e)

+ [8(3-2.j3)r2 +3( -1 +J3)r[ -(-20+ 12.j3)e2
, eJ

+ [8(3 + 2J3)r2- 3(1 + .j3)]r[(20 + 12J3)e2, encsJ(3/2)

16nrT2 = - { -llK@+8m(e)+9r(8e2, e)- 3(1 + J3)f[(20 + 12J3)e2
, eJ

+3( -1 +J3)r[-( -20+ 12J3)e2, enc..J(3/2)

96nrT3 = {8m(~1)/ei + [24r2-(3+8/emK(e1)-9(8r2-1)r(8, ~l)

+ [8(3 - 2J3)r2+ 3( -1 + J3)]r[ - (- 20 + 12J3), ~ 1]

+ [8(3 + 2J3)r2- 3(1 + J3)]r[(20 + 12J3), ~ InCSe 1J(3/2)
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16nrT4 = - {8m(~ d/~i -(8 + 3~nK(~ l)/~i +9r(8, ~1)- 3(1 + J3)f[(20+ 12J3), ~1]

+ 3( -1 + J3)f[ - ( - 20 + 12J3), ~ l]}Cs~1J(3/2)

_ {~3 (1 +J3)t (-1 +J3)t }c rJ3
16rTs - J3+(r2-i)t [r2-(3-J3)/4]t [-r2+(3+J3)/4]t s

nrT6 = -2csr(48r2'1'1 -3'1'2)

8rT - {~ (-I+J3)t} J
7 - J3 [-r2+(3+J3)/4]t csr 3

nTs = -2csr(-3'1'2+48r2'1'1+4r2'1'3-3'1'4),4rT9 = 5csr

-nrT10 = -2csr(-3'1's+48r2'1'6+4r2'1'7-3'1's)

and

1155
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T>y+Q

I+Q<r<y+Q

Similarly it can be shown that the other displacements are given by

1

0, ' < 1

4npc;Qrug = (nd2-nzfd /3lO(r), 1 < r < I+Q

/3lO(r)-/3lo(r-Q), r> 1+Q

0, r < 1/.,}3

/3l1(r), 1/.,}3 < r < Q+ 1/.,}3

fJll(r)-pll(r-Q), Q+l/.,}3 < r < 1
4npc;Qr 1
--.::..c.;=-u", = /3dr)-/3l1(r-Q), 1 < T <}'

A4

/3i3(r)-/311(r-Q), y < r < I+Q
i

lfJ13(r)- fJ dr - Q),

{3 \,(r)- P13(' - Q),

r0, . r < 1/.,}3

/314-(r), li~j3 < T < Q+ 1/.,}3

/314(r)-/314(r-Q), Q+l/.,}3 < r < 1
4npc;Qr 2
--'-u", = /3IS(r)-/314(r-Q), 1 < r < }'

G2
/316(r)-/314(r-Q), y < r < I+Q

l;:;;:;=~:;;:=~;: ::~:d < y+Q

0, T < 1/.J3

/317(r), 1/.,}3 < r < Q+l/.,}3

/317(r)-/317(r-Q), Q+ 1/.,}3 < r < 1
4npc;Qr 0 /3)
---::--'-'---U = /318(-r)- 17(r-Q, 1 < r < y

f3 n3 z

/319(r)-/317(r-Q), y < r < 1+Q

/319(r)-/318(r-Q), 1+Q < r < y+Q

/3 19(r) - /3 19(r - Q), r > y + Q

/320(r), 1/.,}3 < r < Q+ 1/.,}3

/320(r)-/320(r-Q), Q+l/.,}3 < r < 1

/321(r)-/320(r-Q), 1 < r < y

/3zz(r)-/320(r-Q), y < r < I+Q

/3zz(r)-/321(r-Q), 1+Q < r < y+Q

/322(r)-f322(r-Q), r> y+Q

(31)

(32)

(33)

(34)

(35)
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0, r < 1/.J3

PZ3(r), 1/.J3 < r < Q+ 1/.J3

PZ3(r)-PZ3(r Q), Q+l/.J3 < r < 1
8npc;Qr Z-----c;:-uz = - pZ4(r)-Pdr-Q), 1 < r < y

pzs(r)-Pdr-Q), y<r<1+Q

pzs(r)-PZ4(r-Q), 1+Q < r < y+Q

pzs(r)-pzs(r-Q), r> y+Q

A4 = 2[(fZn3 +!3nZ) cos 4>-(fln3 +!3nl) sin 4>]
As = 2[(fln3-!3nl)Cos4>+(fzn3-!3nZ)sin4>]

rPIO = csr, Pil = T I - Tz-2(A 1+Az)(Tl -2Tz)

P12 = T3-T4 2(A 1+Az)(T3 2T4)

a _ a CS ( z_ z)t_(A1 +Az)cs ( z_ Z)t
1'13 - 1'1Z +2 r r r y

r r

{J14 = Ts-T6 , PIS == T7 -Ts, {J16 = T9 -TlO

48nrP17 = {-8mW+ l1K(e)+3(1 +.J3)r[(20+ 12J3)e, eJ
- 3( -1 + .J3)f[ -( - 20 + 12.J3)e, ~] -9f(8~z,mScs.J(3/2)

48nr{JlS = - {
8nit1

) + (3+ :i}K(e1)+ 3(1 +.J3)r[(20+ 12.J3), ~ I]

- 3(-1 +.J3)r[ -( - 20+ 12.J3), erJ-9f(S, ~l)} scse1J(3/2)

SyZcs

P19 = PIS *z yZ)t

Bra - -c r{6_.J3 (S+3.J3)± (-S+3.J3)t }
pzo- s (rZ_!)t [-rz+(3+.J3)/4]t+[rZ-(3-.J3)/4]t

4rPZl = -csr{6- [-)~~:fj;)j4]t}' 4rpzz = -csr

nrPZ3 = 12c.(2rzT11 - T1Z)' nr{JZ4 = 12c.(2rzT13 - T14)

4cs(2rZ _ yZ)
{Jzs = PZ4 + 2r(rZ _yZ)t

48Tll = {3KW-9f(8e2
, e)+(3 -2.J3)r[-(-20+ 12J3)eZ,~]

+(3 + 2J3)r(20+ 12.J3)eZ, ~]}.J(3/2)

192T12 = - {Sm(e)-llK(e)+9r(Se, e)+3( -1 +J3)f[-(-20+ 12J3)e2, eJ

- 3(1 + .J3)r(20+ 12J3)eZ, e]}.J(3/2)

1157
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48T13 = {3K(e 1)-9r(8, e1)+(3-2.j3)r[ -( 20+ 12.j3),e 1]

+ (3 + 2.j3)r[(20 + 12.j3), eIJ}e1.j(3/2)

{8m(~1) ( 8) .j.j192T14 = - ~- 3+~i K(ed+9r(8,el}+3(-1+ 3)r[-(-20+12 3),e1J

- 3(1 + .j3)r[(20 + 12.j3), e IJ} e1.j(3/2).

The above sequence is for Q 0·1. It could be quite different for different values of Q.
A main feature ofthese results (and a major contribution ofthe paper) is the fact that closed
form expressions are obtained for an arbitrary dipole orientation. It is seen that the general
response is nonaxisymmetric, with cos 4>, sin 4>, cos 24> and sin 24> arising.
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FIG_ 2. Vertical displacements 327t/lc.r2u./costP vs. time 't = tcjr for Q = Q.O, O.Ql, 0·1,1·0.
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3. NUMERICAL RESULTS
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Here numerical results based on (28H36) are presented and discussed. Only the special
geometry,

12 = 0,

which corresponds to a vertical dipole with its normal along the x-axis, is treated.
Shown in Fig. 2 are the vertical displacements Uz as functions of time for several values

of the ramp rise-time Q. The arrows indicate the arrival of various events. P designates
the pressure wave, S the shear wave and R the Rayleigh event. A major feature is the singular
behaviour (like 1/Jr as r goes to 0) at the Rayleigh and delayed Rayleigh arrivals. This is
in contrast to the case ofa point surface load, which was recently treated by the authors [21].
There the vertical displacements were found to be finite for a ramp time-dependence.
The growth of a local maximum near the P-arrival as Q decreases is also noteworthy.
In fact for Q = 0, which corresponds to a Heaviside step time-dependence, the vertical
displacements undergo a finite jump at P. A finite jump at S also occurs for Q = O. Finally
it should be noted that for all Q values, the displacements are constant after the delayed
Rayleigh arrival.

Figure 3 gives the horizontal displacements u, as functions of time for several values
of Q. Again singular behaviour like l/Jr occurs at the Rayleigh and delayed Rayleigh

~ 40
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~ 20
:0
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-l!Q

0'6 1'0 1'4

Time T' f'C. Ir

1·8 2·2 2·6

FIG. 3. Horizontal displacements n2,2jJ.c,u./cos 4> vs. time T = tcj, for Q = 0·01,0·1,1·0.
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arrivals. Also a build up of a local maximum just after the P-arrival can be seen as Q tends
to zero. Here the displacements are not constant after the delayed Rayleigh arrival, but
instead slowly approach their static values.

Figure 4gives the horizontal displacements u~ as functions oftime for several values ofQ.
In strong contrast to Uz and Ur , u~ is not singular for any value of Q, except Q = O. As Q
approaches zero though, infinite jumps at the Rayleigh and delayed Rayleigh arrivals
begin to build up.
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A6aTpaKT-B ynpyroM nOJIynpocTpaHCTBe HCCJIe,tlYKlTCli nOBepXHOCTHble nepeMellleHHlI BCJIe,tlCTBHe
nOBepXHOCTHoro, 3aBHClllllero OT BpeMeHH ,tIHnOJIlI. J],aKlTcll BbIpalKeHHlI B 3aMICHYTOM BH,tIe):\JIlI npOH3BO
JIbHO HanpaBJIeHHOrO ,lIHnOJIlI, c 3aBHCHMOCTbKl HaKJIOHa BO BpeMeHH. TIpHBO,llHTCli '1HCJIeHHbIH aHaJIHX
:nHX BbIpalKeHHH ,lIJIlI CneUHaJIbHOrO HanpaBJIeHHlI .uHITOJIlI, ,tIJIlI HeKOTopbIX 3Ha'leHHH BOJBpaCTaHHlI
HaKJIOHa BO BpeMeHH.


